

Android SDK Documentation

January 27

By Midtrans

1

Table Of Contents
Table Of Contents 2

Getting Started 4
Transaction flow 4
Supported Payment Methods 5
Security Aspects 5
Prerequisites 6

Android SDK 7
Installation 7

Add Midtrans Bintray repository 7
Add SDK installation following into your build.gradle 7

SDK Sandbox Dependencies 7
SDK Production Dependencies 8
Differentiate Sandbox and Production in one app (Optional) 8

Adding external card scanner (Optional) 10
Prepare Transaction Details 11

Item Details 11
Bill Info 12
Set Transaction Request into SDK Instance 12

Starting Payment 12
Start payment method screen 13
Direct payment screen 13

Start Direct Payment Screen 13
Payment Result 16
Additional Payment Features 17

Two Clicks Payment 17
One Click Payment 18
UI Customization 18

Custom Fonts 18
Custom Themes 18
Skip Customer Details Screen (Optional) 19
UIKitCustomSetting 20

2

Getting Started
Midtrans mobile SDK enable merchants to accept online payments natively in their mobile apps.
We provide the drop in User interface for making transactions on all the payment types
supported by Midtrans. Watch the video for the default SDK example.

There are four parties involved in the payment process for making a payment:

1. Merchant Server: The merchant backend implementation
2. Customers
3. Midtrans Backend (Payment Processor)
4. Midtrans Mobile SDK

Transaction flow

1. Checkout: Customer clicks the Checkout button on the Host application and the app

makes a request to the Merchant Server
2. Token request: Merchant Server makes a request to Veritrans server with Order

Information.
3. Token response: Midtrans responds with a valid transaction token to Merchant server
4. Token response: Merchant server forwards the token to the Mobile SDK
5. Get transaction options: Mobile SDK requests payment/merchant information based on

the token

3

6. Transaction options response: Mobile SDK renders the payment Options and payment
information to make the payment

7. Pay: Customers selects the payment method and the payment details and clicks "Pay"
8. Charge: Mobile SDK sends the Charge request to the Veritrans Backend for payment

Processing.
9. Charge response: Mobile SDK receives the response from the Veritrans Backend and

triggers the handler on Mobile App with success/failure/pending status
10. Charge notification: Midtrans Backend sends a notification to the Merchant backend

confirming the completion of transaction.

Supported Payment Methods
1. Credit/Debit Cards - Support for making payments via credit cards and or debit cards

using our two-clicks feature. We support Visa, Mastercard, American Express and JCB
2. Mandiri ClickPay
3. CIMB Clicks
4. ePay BRI
5. Indosat Dompetku
6. Mandiri e-Cash
7. Bank Transfer - Support payment using Permata Virtual Account and BCA Virtual

Account.
8. Mandiri Bill Payment
9. Indomaret - Payment via convenience Stores
10. BCA Klikpay
11. KlikBCA
12. Kioson
13. Gift Card Indonesia

Security Aspects
- There are 2 separate keys CLIENT_KEY and SERVER_KEY (available on MAP)

- CLIENT_KEY is used for tokenizing the credit card. It can only be used from the
Client(mobile device)

- SERVER_KEY is used for acquiring the token from the Midtrans server. It is not
to be used from the device, all API requests that use the SERVER_KEY need to
be made from the Merchant Server.

- We use strong encryption for making connections to Merchant server, please make sure
it has valid https Certificate.

Following are configurable parameters of SDK that can be used while performing transaction -

- Merchant server Endpoint / Base URL : URL of server to which transaction data will be
sent. This will also be referred to as a merchant server.

- Transaction details - contains payment information like amount, order Id, payment

4

method etc.
- Midtrans Client Key - token that specified by merchant server to enable the transaction

using credit card. Available on the MAP

Prerequisites
1. Create a merchant account in MAP
2. In MAP, setup your merchant accounts settings, in particular Notification URL.
3. Setup your merchant server. A server side implementation is required for midtrans

mobile SDK to work. You can check the server implementation reference, and walk
through the API's that you may need to implement on your backend server.

4. Minimum requirements: AndroidSDK: Android 4.0 Ice Cream Sandwich API Level 14

5

Android SDK

This SDK provides an UI to take required information from user to execute transaction.

Installation

Add Midtrans Bintray repository

repositories {

jcenter()

// Add the midtrans repository into the list of repositories

maven

{

 url "http://dl.bintray.com/pt-midtrans/maven" }

}

Add SDK installation following into your build.gradle
You need to add Midtrans SDK inside your app's module build.gradle.

SDK Sandbox Dependencies

dependencies {

// For using the Midtrans Sandbox compile
'com.midtrans:uikit:$VERSION-SANDBOX'

}

6

SDK Production Dependencies

dependencies {

// For using the Midtrans Production

compile 'com.midtrans:uikit:$VERSION'

}

Then you need to initialize it on your activity or application class.

SdkUIFlowBuilder.init(CONTEXT, CLIENT_KEY, BASE_URL, new
TransactionFinishedCallback() {

 @Override

 public void onTransactionFinished(TransactionResult result) {

 // Handle finished transaction here.

 }

 })

 .buildSDK();

Note:

- CONTEXT: Application/activity context
- CLIENT_KEY: Your midtrans client key (provided in MAP)
- BASE_URL: Your merchant server URL

Differentiate Sandbox and Production in one app (Optional)
You can support two payment environments in your app by defining two flavors in your
build.gradle.

7

android {

...

// Define Merchant BASE URL and CLIENT KEY for each flavors

productFlavors {

 sandbox {

 buildConfigField "String", "BASE_URL",
"\"​https://merchant-url-sandbox.com/\​""

 buildConfigField "String", "CLIENT_KEY",
"\"VT-CLIENT-sandbox-client-key\""

 }

 production {

 buildConfigField "String", "BASE_URL",
"\"https://merchant-url-production.com/\""

 buildConfigField "String", "CLIENT_KEY",
"\"VT-CLIENT-production-client-key\""

 }

}

...

}

// Define Midtrans SDK dependencies for each flavors

dependencies {

...

sandboxCompile 'com.midtrans:uikit:$VERSION-SANDBOX'

productionCompile 'com.midtrans:uikit:$VERSION'

...

}

Initialize your SDK using merchant BASE_URL and CLIENT_KEY provided by BuildConfig data.

SdkUIFlowBuilder.init(CONTEXT, BuildConfig.CLIENT_KEY,
BuildConfig.BASE_URL, new TransactionFinishedCallback() {
 @Override
 public void onTransactionFinished(TransactionResult
result) {

8

https://merchant-url-sandbox.com//

 // Handle finished transaction here.
 }
 })
 .buildSDK();

Initialize Midtrans SDK using provided base URL and client key in BuildConfig

SdkUIFlowBuilder.init(CONTEXT, BuildConfig.CLIENT_KEY, BuildConfig.BASE_URL,
new TransactionFinishedCallback() {

@Override public void onTransactionFinished(TransactionResult result) {

// Handle finished transaction here. }

})

.buildSDK();

Adding external card scanner (Optional)
We provide a plugin to integrate card.io for allowing customers to read the credit card/debit card
information using the mobile phone camera.

You can add external card scanner using ScanCardLibrary implementation by midtrans scan
card library into your app's dependencies in build.gradle.

//..other dependencies compile ('com.midtrans:scancard:$VERSION'){

exclude module: 'uikit'

}

Then, when initialize the SDK you can setExternalScanner(new ScanCard()) on SdkUIFlowBuilder

SdkUIFlowBuilder.init(...)

// initialization for using external scancard .setExternalScanner(new
ScanCard()) .buildSDK();

9

Prepare Transaction Details
TRANSACTION_ID​ and ​TOTAL_AMOUNT​ was required to create a transaction request that
was required for each payment.

Create Transaction Request object

TransactionRequest transactionRequest = new TransactionRequest(TRANSACTION_ID,
TOTAL_AMOUNT);

Item Details
Item details was required for Mandiri Bill and BCA KlikPay. It's optional for other payment.

ItemDetails class holds information about item purchased by user. TransactionRequest takes an
array list of item details.

ItemDetails itemDetails1 = new ItemDetails(ITEM_ID_1, ITEM_PRICE_1,
ITEM_QUANTITY_1, ITEM_NAME_1);

ItemDetails itemDetails2 = new ItemDetails(ITEM_ID_2, ITEM_PRICE_2,
ITEM_QUANTITY_2, ITEM_NAME_2);

// Create array list and add above item details in it and then set it to
transaction request.

ArrayList<ItemDetails> itemDetailsList = new ArrayList<>();
itemDetailsList.add(itemDetails1); itemDetailsList.add(itemdetails2);

// Set item details into the transaction request.
transactionRequest.setItemDetails(itemDetailsList);

Note:

- This was assumed that you have created transactionRequest object using required
parameters.

- ITEM_NAME maximum character length is 50.

10

Bill Info
Bill Info was optional on Mandiri Bill payment only.

BillInfoModel class holds information about billing information that will be shown at billing
details.

BillInfoModel billInfoModel = new BillInfoModel(BILL_INFO_KEY,
BILL_INFO_VALUE); // Set the bill info on transaction details
transactionRequest.setBillInfoModel(billInfoModel);

Set Transaction Request into SDK Instance
After creating transaction request with optional fields above, you must set it into SDK instance.

MidtransSDK.getInstance().setTransactionRequest(transactionRequest);

Starting Payment
Payment Mode
If you support credit card payment, you must select one of three card click types.

Payment Mode

CreditCard creditCardOptions = new CreditCard();

// Set to true if you want to save card to Snap
creditCardOptions.setSaveCard(false);

// Set to true to save card token as `one click` token
creditCardOptions.setSecure(false);

// Set acquiring bank (Optional)
creditCardOptions.setBank(BankType.BANK_NAME);

// Set MIGS channel (ONLY for BCA and Maybank Acquiring bank)
creditCardOptions.setChannel(CreditCard.MIGS);

// Set Credit Card Options
transactionRequest.setCreditCard(creditCardOptions);

// Set card payment info
transactionRequest.setCardPaymentInfo(CARD_CLICK_TYPE, IS_SECURE);

// Set transaction request into SDK instance

11

MidtransSDK.getInstance().setTransactionRequest(transactionRequest);

Note:

- CARD_CLICK_TYPE​ - type of card use these resource strings:
- normal​ - for normal transaction
- one_click​ - for one click
- two_click​ - for two click

- IS_SECURE​ - set to true if using 3D secure

Start payment method screen
Default mode for Android SDK is showing payment method screen. This screen will show
available payment method.

You can set which payment method that's available using Snap Preferences in MAP.

MidtransSDK.getInstance().startPaymentUiFlow(ACTIVITY_CONTEXT);

MidtransSDK.getInstance().startPaymtUiFlow(ACTIVITY_CONTEXT);

Direct payment screen
Users can directly go to payment screen and skip the default payment method screen.

Note: Please make sure the payment method is activated via Setting -> Snap Preferences in
MAP.

Start Direct Payment Screen

Start credit card payment

MidtransSDK.getInstance().startCreditCardUIFlow(ACTIVITY_CONTEXT);

Start Bank transfer payment

MidtransSDK.getInstance().startBankTransferUIFlow(ACTIVITY_CONTEXT);

Start Permata bank transfer payment

12

MidtransSDK.getInstance().startPermataBankTransferUIFlow(ACTIVITY_CONTEXT);

Start BCA bank transfer payment

MidtransSDK.getInstance().startBCABankTransferUIFlow(ACTIVITY_CONTEXT);

Start Mandiri bank transfer payment

MidtransSDK.getInstance().startMandiriBankTransferUIFlow(ACTIVITY_CONTEXT);

Start Other bank transfer payment

MidtransSDK.getInstance().startOtherBankTransferUIFlow(ACTIVITY_CONTEXT);

Start Klik BCA payment

MidtransSDK.getInstance().startKlikBCAUIFlow(ACTIVITY_CONTEXT);

Start BCA KlikPay payment

MidtransSDK.getInstance().startBCAKlikPayUIFlow(ACTIVITY_CONTEXT);

Start Mandiri Clickpay payment

MidtransSDK.getInstance().startMandiriClickpayUIFlow(ACTIVITY_CONTEXT);

Start Mandiri E-Cash payment

MidtransSDK.getInstance().startMandiriECashUIFlow(ACTIVITY_CONTEXT);

Start CIMB Clicks payment

MidtransSDK.getInstance().startCIMBClicksUIFlow(ACTIVITY_CONTEXT);

Start BRI Epay payment

MidtransSDK.getInstance().startBRIEpayUIFlow(ACTIVITY_CONTEXT);

13

Start Telkomsel Cash payment

MidtransSDK.getInstance().startTelkomselCashUIFlow(ACTIVITY_CONTEXT);

14

Start Indosat Dompetku payment

MidtransSDK.getInstance().startIndosatDompetkuUIFlow(ACTIVITY_CONTEXT);

Start XL Tunai payment

MidtransSDK.getInstance().startXlTunaiUIFlow(ACTIVITY_CONTEXT);

Start Indomaret payment

MidtransSDK.getInstance().startIndomaretUIFlow(ACTIVITY_CONTEXT);

Start Kioson payment

MidtransSDK.getInstance().startKiosonUIFlow(ACTIVITY_CONTEXT);

Start Gift Card payment

MidtransSDK.getInstance().startGiftCardUIFlow(ACTIVITY_CONTEXT);

Payment Result
TransactionResult is wrapper for UI flow finished transaction object. It contains:

- status : either pending, success, failed or invalid based on payment API.
- transactionResponse: contains payment response from Payment API.
- transactionCanceled : this will be set to true only if transaction was canceled from inside

SDK. For example when selecting payment method users click back.

Here the step:

- First one to check is transactionCanceled. If this was set to true then you don't have to
check other field.

- You can check based on status: pending will be only use on asynchronous transaction
like bank transfer or internet banking.

- You can use API to get transaction status or wait for notification comes to your backend
to ensure the latest status of the transaction.

- success / failed: For synchronous transaction you can immediately know the
status of the transaction.

- invalid : There are unknown error happened. transactionResponse for detailed

15

transaction response from Payment API.

Additional Payment Features
Credit card payment on this SDK can be customized to save customer credit card details so
user can use it on their next transaction.

Two Clicks Payment
For the payment, you need to setup this configuration to enable the two clicks mode.

CreditCard creditCardOptions = new CreditCard();

// Set to true if you want to save card

creditCardOptions.setSaveCard(true);

// Set to false to save card token as `two clicks` token
creditCardOptions.setSecure(false);

// Set Credit Card Options
transactionRequest.setCreditCard(creditCardOptions);

// Set card payment info and 3DS enabled here
transactionRequest.setCardPaymentInfo("two_click", false);

// Set transaction request into SDK instance
MidtransSDK.getInstance().setTransactionRequest(transactionRequest);

To use two clicks configuration, merchant can use both default token storage on Midtrans
backend or use their server to store their customer credential.

Default Token Storage Usage

By default this SDK will use Midtrans token storage to save customer credential so you don't
need to setup anything.

Store Token on Merchant Server

Please take a look at this guide to see save card feature implementation in merchant server.

Then you need configure SDK to disable built in token storage.

SdkUIFlowBuilder.init(CONTEXT, CLIENT_KEY, BASE_URL, CALLBACK)

// disable built in token storage .useBuiltInTokenStorage(false) .buildSDK();

16

One Click Payment
For one click payment you can only use built token storage as credential storage option.

One click payment configuration

CreditCard creditCardOptions = new CreditCard();

// Set to true if you want to save card

creditCardOptions.setSaveCard(true);

// Set to true to save card token as `one click` token
creditCardOptions.setSecure(true);

// Set Credit Card Options
transactionRequest.setCreditCard(creditCardOptions);

// Set card payment info, 3DS must be enabled
transactionRequest.setCardPaymentInfo("one_click", true);

// Set transaction request into SDK instance
MidtransSDK.getInstance().setTransactionRequest(transactionRequest);

UI Customization

Custom Fonts
To apply Custom fonts, you can use this code.

Custom Fonts

MidtransSDK midtransSDK = MidtransSDK.getInstance();
midtransSDK.setDefaultText("open_sans_regular.ttf");
midtransSDK.setSemiBoldText("open_sans_semibold.ttf");
midtransSDK.setBoldText("open_sans_bold.ttf");

Note: open_sans_regular.ttf, open_sans_semibold.ttf, open_sans_bold.ttf is path of the custom
font on the assets directory.

Custom Themes
Also you can set the color primary in your theme in styles.xml.

<!-- Base application theme. --> <style name="AppTheme"
parent="Theme.AppCompat.Light.NoActionBar">

<item name="colorPrimary">@color/colorPrimary</item> <item

17

name="colorAccent">@color/colorAccent</item> <item
name="colorPrimaryDark">@color/colorPrimaryDark</item> <item
name="colorButtonNormal">@color/colorButton</item> </style>

Then to ensure this replace library theme, please add these lines into your AndroidManifest.xml
application tag.

<application

 ...

 android:theme="AppTheme"

 tools:replace="android:theme">

Skip Customer Details Screen (Optional)
On the first SDK usage, user needs to fill customer details required by payment.

You can skip this screen if you want by following this guide.

// Set user details

UserDetail userDetail = new UserDetail();
userDetail.setUserFullName(FULL_NAME);

userDetail.setEmail(EMAIL);

userDetail.setPhoneNumber(PHONE_NUMBER);

userDetail.setUserId(USER_ID);

// Initiate address list

ArrayList<UserAddress> userAddresses = new ArrayList<>();

// Initiate and add shipping address

UserAddress shippingUserAddress = new UserAddress();
shippingUserAddress.setAddress(shippingAddress);
shippingUserAddress.setCity(shippingCity);
shippingUserAddress.setCountry(shippingCountry);
shippingUserAddress.setZipcode(shippingZipcode);
shippingUserAddress.setAddressType(Constants.ADDRESS_TYPE_SHIPPING);

userAddresses.add(shippingUserAddress);

// Initiate and add billing address

18

UserAddress billingUserAddress = new UserAddress();

billingUserAddress.setAddress(billingAddress);
billingUserAddress.setCity(billingCity);
billingUserAddress.setCountry(country);
billingUserAddress.setZipcode(zipcode);
billingUserAddress.setAddressType(Constants.ADDRESS_TYPE_BILLING);

userAddresses.add(billingUserAddress);

// if shipping address is same billing address

// you can user type Constants.ADDRESS_TYPE_BOTH

// NOTE: if you use this, skip initiate shipping and billing address above

UserAddress userAddress = new UserAddress();
userAddress.setAddress(billingAddress);

userAddress.setCity(billingCity);

userAddress.setCountry(country);

userAddress.setZipcode(zipcode);
userAddress.setAddressType(Constants.ADDRESS_TYPE_BOTH);
userAddresses.add(userAddress);

// Set user address to user detail object
userDetail.setUserAddresses(userAddresses);

// Save the user detail. It will skip the user detail screen
LocalDataHandler.saveObject("user_details", userDetail);

Note:

- All user details is required to make transactions.
- Minimum one address is required to make transactions.
- USER_ID is required to enable save card and one-click/two-clicks.

UIKitCustomSetting
We provide UIKitCustomSetting to handle more customizable UI in our SDK.

Skip Payment Status

You can skip payment status provided by Midtrans SDK if you want to show your own status
page.

// Init custom settings UIKitCustomSetting uisetting = new
UIKitCustomSetting(); uisetting.setShowPaymentStatus(true);

19

MidtransSDK.getInstance().setUIKitCustomSetting(uiKitCustomSetting);

Set Default save card options to true

In credit card payment page, there is checkbox to save card and it's not checked by default. You
can make this checkbox checked by default by using this settings.

// Init custom settings UIKitCustomSetting uisetting = new
UIKitCustomSetting(); uiKitCustomSetting.setSaveCardChecked(true);
MidtransSDK.getInstance().setUIKitCustomSetting(uiKitCustomSetting);

20

